logologo
  • AI Tools

    DB Query GeneratorMock InterviewResume BuilderLearning Path GeneratorCheatsheet GeneratorAgentic Prompt GeneratorCompany ResearchCover Letter Generator
  • XpertoAI
  • MVP Ready
  • Resources

    CertificationsTopicsExpertsCollectionsArticlesQuestionsVideosJobs
logologo

Elevate Your Coding with our comprehensive articles and niche collections.

Useful Links

  • Contact Us
  • Privacy Policy
  • Terms & Conditions
  • Refund & Cancellation
  • About Us

Resources

  • Xperto-AI
  • Certifications
  • Python
  • GenAI
  • Machine Learning

Interviews

  • DSA
  • System Design
  • Design Patterns
  • Frontend System Design
  • ReactJS

Procodebase © 2024. All rights reserved.

Level Up Your Skills with Xperto-AI

A multi-AI agent platform that helps you level up your development skills and ace your interview preparation to secure your dream job.

Launch Xperto-AI

Query Parameters and Request Body in FastAPI

author
Generated by
Shahrukh Quraishi

15/10/2024

AI Generatedfastapi

Sign in to read full article

Introduction

When building APIs with FastAPI, you'll often need to handle various types of input data. Two common methods for receiving data in your API endpoints are query parameters and request bodies. In this article, we'll explore both of these concepts and learn how to implement them effectively in your FastAPI applications.

Query Parameters

Query parameters are a way to pass data to your API endpoint through the URL. They appear after the question mark (?) in the URL and are separated by ampersands (&).

Basic Usage

Let's start with a simple example:

from fastapi import FastAPI app = FastAPI() @app.get("/items") async def read_items(skip: int = 0, limit: int = 10): return {"skip": skip, "limit": limit}

In this example, we've defined two query parameters: skip and limit. Users can now call our API like this:

/items?skip=20&limit=50

FastAPI automatically validates and converts the parameters to the specified types (in this case, integers).

Optional Parameters

Query parameters are optional by default. If you want to make a parameter required, you can use Python's type hints:

@app.get("/items") async def read_items(item_id: int): return {"item_id": item_id}

Now, calling the endpoint without providing item_id will result in an error.

Multiple Values

You can also accept multiple values for a single parameter using Python's list type hint:

from typing import List @app.get("/items") async def read_items(item_ids: List[int] = Query(None)): return {"item_ids": item_ids}

This allows users to call the API like this:

/items?item_ids=1&item_ids=2&item_ids=3

Request Body

While query parameters are great for simple data, request bodies are better suited for sending larger amounts of structured data to your API.

Basic Usage

Here's a simple example of how to use a request body:

from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class Item(BaseModel): name: str description: str = None price: float tax: float = None @app.post("/items") async def create_item(item: Item): return item

In this example, we've defined a Pydantic model Item to represent the structure of our request body. FastAPI will automatically validate the incoming JSON data against this model.

Combining Query Parameters and Request Body

You can use both query parameters and request bodies in the same endpoint:

@app.post("/items/{item_id}") async def update_item(item_id: int, item: Item, q: str = None): result = {"item_id": item_id, **item.dict()} if q: result.update({"q": q}) return result

This endpoint accepts an item_id as a path parameter, an Item object in the request body, and an optional query parameter q.

Advanced Techniques

Request Body with Nested Models

You can create more complex request bodies using nested Pydantic models:

from pydantic import BaseModel class Image(BaseModel): url: str name: str class Item(BaseModel): name: str description: str = None price: float tax: float = None images: List[Image] = None @app.post("/items") async def create_item(item: Item): return item

Request Body with Arrays

You can also accept arrays in your request body:

@app.post("/items") async def create_items(items: List[Item]): return items

This endpoint accepts a JSON array of Item objects.

Best Practices

  1. Use query parameters for filtering, sorting, and pagination.
  2. Use request bodies for complex data structures or when sending large amounts of data.
  3. Always validate and sanitize input data to prevent security vulnerabilities.
  4. Use appropriate HTTP methods (GET, POST, PUT, DELETE) based on the action being performed.
  5. Document your API endpoints thoroughly, including all possible query parameters and request body structures.

By understanding and implementing query parameters and request bodies effectively, you'll be well on your way to creating robust and flexible APIs with FastAPI. Remember to practice and experiment with different scenarios to solidify your understanding of these concepts.

Popular Tags

fastapipythonquery parameters

Share now!

Like & Bookmark!

Related Collections

  • LangChain Mastery: From Basics to Advanced

    26/10/2024 | Python

  • TensorFlow Mastery: From Foundations to Frontiers

    06/10/2024 | Python

  • Streamlit Mastery: From Basics to Advanced

    15/11/2024 | Python

  • Mastering Scikit-learn from Basics to Advanced

    15/11/2024 | Python

  • Mastering NumPy: From Basics to Advanced

    25/09/2024 | Python

Related Articles

  • Unlocking Question Answering with Transformers in Python

    14/11/2024 | Python

  • Understanding LangChain Components and Architecture

    26/10/2024 | Python

  • Mastering Pipeline Construction in Scikit-learn

    15/11/2024 | Python

  • Mastering Database Integration with SQLAlchemy in FastAPI

    15/10/2024 | Python

  • Mastering Pandas Memory Optimization

    25/09/2024 | Python

  • Supercharging Your NLP Pipeline

    22/11/2024 | Python

  • Mastering PyTorch Optimizers and Learning Rate Scheduling

    14/11/2024 | Python

Popular Category

  • Python
  • Generative AI
  • Machine Learning
  • ReactJS
  • System Design