When working with Language Models (LLMs) in LangChain, we often receive responses in free-form text. While this is great for human reading, it's not always ideal for programmatic use. This is where Output Parsers come in handy.
Output Parsers are tools that help structure the output from LLMs into more usable formats. They can convert raw text into specific data types, extract key information, or format responses in a particular way.
Let's explore some common Output Parsers in LangChain and how to use them effectively in Python.
One of the simplest yet useful parsers is the CommaSeparatedListOutputParser. It takes a string output and converts it into a list of items.
Here's how you can use it:
from langchain.output_parsers import CommaSeparatedListOutputParser from langchain.prompts import PromptTemplate from langchain.llms import OpenAI # Initialize the parser parser = CommaSeparatedListOutputParser() # Create a prompt template prompt = PromptTemplate( template="List five fruits:\n\n{format_instructions}", input_variables=[], partial_variables={"format_instructions": parser.get_format_instructions()} ) # Set up the language model llm = OpenAI(temperature=0) # Generate and parse the output output = llm(prompt.format()) result = parser.parse(output) print(result) # ['apple', 'banana', 'orange', 'grape', 'strawberry']
In this example, we're asking the LLM to list five fruits. The parser then converts the comma-separated string into a Python list, making it easy to work with programmatically.
For more complex outputs, we can use Pydantic models to define the structure we expect. This is particularly useful when we need to extract multiple pieces of information from a single response.
Here's an example:
from langchain.output_parsers import PydanticOutputParser from langchain.prompts import PromptTemplate from langchain.llms import OpenAI from pydantic import BaseModel, Field class Movie(BaseModel): title: str = Field(description="The title of the movie") director: str = Field(description="The director of the movie") year: int = Field(description="The year the movie was released") parser = PydanticOutputParser(pydantic_object=Movie) prompt = PromptTemplate( template="Provide information about a famous movie:\n\n{format_instructions}", input_variables=[], partial_variables={"format_instructions": parser.get_format_instructions()} ) llm = OpenAI(temperature=0.7) output = llm(prompt.format()) result = parser.parse(output) print(f"Title: {result.title}") print(f"Director: {result.director}") print(f"Year: {result.year}")
This script will generate information about a movie and parse it into a structured Movie
object, making it easy to access specific details.
Sometimes, you might need a parser that doesn't exist in LangChain. In such cases, you can create your own custom parser by subclassing the BaseOutputParser
.
Here's a simple example of a custom parser that extracts key-value pairs:
from langchain.output_parsers import BaseOutputParser class KeyValueParser(BaseOutputParser): def parse(self, text): lines = text.strip().split('\n') result = {} for line in lines: key, value = line.split(':') result[key.strip()] = value.strip() return result parser = KeyValueParser() prompt = PromptTemplate( template="Provide information about a person in key-value format:\n\n{format_instructions}", input_variables=[], partial_variables={"format_instructions": "Name: [name]\nAge: [age]\nOccupation: [occupation]"} ) llm = OpenAI(temperature=0.7) output = llm(prompt.format()) result = parser.parse(output) print(result) # {'Name': 'John Doe', 'Age': '35', 'Occupation': 'Software Engineer'}
This custom parser takes a string with key-value pairs separated by newlines and converts it into a Python dictionary.
Output Parsers in LangChain are powerful tools for structuring and extracting information from AI-generated responses. By using these parsers effectively, you can bridge the gap between free-form text outputs and structured data that's easy to work with in your Python applications.
Remember, the key to using Output Parsers effectively is to clearly communicate the expected format in your prompts. This ensures that the LLM generates responses that can be easily parsed and utilized in your code.
05/10/2024 | Python
22/11/2024 | Python
15/10/2024 | Python
15/11/2024 | Python
08/11/2024 | Python
25/09/2024 | Python
15/11/2024 | Python
05/11/2024 | Python
15/10/2024 | Python
14/11/2024 | Python
05/11/2024 | Python
15/11/2024 | Python