When working with large language models (LLMs) and vast amounts of data, efficient indexing and retrieval become crucial. LlamaIndex provides several index types to help you organize and access your data effectively. Let's explore the main index types and learn how to choose the right one for your project.
The Vector Index is the most commonly used index type in LlamaIndex. It's based on embedding vectors, which are numerical representations of text that capture semantic meaning.
Example:
from llama_index import VectorStoreIndex, SimpleDirectoryReader documents = SimpleDirectoryReader('data').load_data() index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine() response = query_engine.query("What is the capital of France?") print(response)
The List Index is a simple, yet powerful index type that stores documents in a list format.
Example:
from llama_index import ListIndex, SimpleDirectoryReader documents = SimpleDirectoryReader('data').load_data() index = ListIndex.from_documents(documents) query_engine = index.as_query_engine() response = query_engine.query("What are the main topics covered in the documents?") print(response)
The Tree Index organizes documents in a hierarchical structure, allowing for efficient traversal and retrieval.
Example:
from llama_index import TreeIndex, SimpleDirectoryReader documents = SimpleDirectoryReader('data').load_data() index = TreeIndex.from_documents(documents) query_engine = index.as_query_engine() response = query_engine.query("What are the main categories of products?") print(response)
The Keyword Index uses traditional keyword-based indexing techniques for fast retrieval.
Example:
from llama_index import KeywordTableIndex, SimpleDirectoryReader documents = SimpleDirectoryReader('data').load_data() index = KeywordTableIndex.from_documents(documents) query_engine = index.as_query_engine() response = query_engine.query("Find documents containing 'artificial intelligence'") print(response)
Choosing the appropriate index type depends on various factors:
Dataset size: For small datasets, List Index might suffice. For larger datasets, consider Vector or Tree Index.
Query complexity: If you need semantic understanding, Vector Index is ideal. For hierarchical queries, use Tree Index.
Update frequency: If your data changes often, Vector Index might be more suitable than Tree Index.
Performance requirements: Keyword Index offers fast retrieval for exact matches, while Vector Index provides better semantic search capabilities.
Memory constraints: List Index is memory-efficient for small datasets, while Vector Index might require more resources for large collections.
Sometimes, combining multiple index types can yield better results. For example:
from llama_index import VectorStoreIndex, KeywordTableIndex, SimpleDirectoryReader documents = SimpleDirectoryReader('data').load_data() vector_index = VectorStoreIndex.from_documents(documents) keyword_index = KeywordTableIndex.from_documents(documents) query_engine = vector_index.as_query_engine() keyword_engine = keyword_index.as_query_engine() response = query_engine.query("What are the latest trends in AI?") keyword_response = keyword_engine.query("Find documents mentioning 'machine learning'") print("Vector Index Response:", response) print("Keyword Index Response:", keyword_response)
By using multiple index types, you can leverage the strengths of each to create a more robust and flexible querying system.
Understanding index types and selection strategies in LlamaIndex is crucial for building efficient LLM-powered applications. By choosing the right index type or combination of types, you can optimize your data retrieval process and create more responsive and accurate systems.
15/11/2024 | Python
26/10/2024 | Python
26/10/2024 | Python
15/11/2024 | Python
25/09/2024 | Python
26/10/2024 | Python
15/10/2024 | Python
17/11/2024 | Python
15/10/2024 | Python
05/10/2024 | Python
17/11/2024 | Python