logologo
  • Dashboard
  • Features
  • AI Tools
  • FAQs
  • Jobs
logologo

We source, screen & deliver pre-vetted developers—so you only interview high-signal candidates matched to your criteria.

Useful Links

  • Contact Us
  • Privacy Policy
  • Terms & Conditions
  • Refund & Cancellation
  • About Us

Resources

  • Certifications
  • Topics
  • Collections
  • Articles
  • Services

AI Tools

  • AI Interviewer
  • Xperto AI
  • Pre-Vetted Top Developers

Procodebase © 2025. All rights reserved.

Level Up Your Skills with Xperto-AI

A multi-AI agent platform that helps you level up your development skills and ace your interview preparation to secure your dream job.

Launch Xperto-AI

Exploring Geographic Plotting with Basemap in Matplotlib

author
Generated by
ProCodebase AI

05/10/2024

python

Sign in to read full article

Introduction to Basemap

Basemap is a powerful library that extends Matplotlib's capabilities, allowing you to create geographic visualizations with ease. It provides tools for plotting 2D data on maps in Python, making it an excellent choice for visualizing geospatial data.

Setting Up Your Environment

Before we dive into creating maps, let's ensure you have the necessary tools installed. You'll need:

  1. Python (3.6 or later)
  2. Matplotlib
  3. Basemap

You can install Basemap using pip:

pip install basemap

Your First Map with Basemap

Let's start with a simple example to get you familiar with Basemap's basic functionality. We'll create a world map:

from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt # Create a new figure plt.figure(figsize=(12, 8)) # Create a Basemap instance m = Basemap(projection='robin', resolution='l', area_thresh=1000.0, lat_0=0, lon_0=0) # Draw coastlines and countries m.drawcoastlines() m.drawcountries() # Fill continents and draw boundaries m.fillcontinents(color='green', lake_color='aqua') m.drawmapboundary(fill_color='aqua') # Add a title plt.title("Simple World Map") # Show the map plt.show()

This script creates a world map using the Robinson projection, with green continents and blue oceans.

Understanding Projections

Basemap offers various map projections to suit different needs. Some popular options include:

  • robin: Robinson projection (used in the previous example)
  • merc: Mercator projection
  • cyl: Equidistant Cylindrical projection
  • ortho: Orthographic projection

Let's create a map using the Orthographic projection:

plt.figure(figsize=(10, 10)) m = Basemap(projection='ortho', lat_0=0, lon_0=0, resolution='l') m.drawcoastlines() m.fillcontinents(color='coral', lake_color='aqua') m.drawmapboundary(fill_color='aqua') plt.title("Orthographic Projection") plt.show()

Adding Data Points to Your Map

One of the most useful features of Basemap is the ability to add data points to your maps. Let's plot some major cities:

from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt plt.figure(figsize=(12, 8)) m = Basemap(projection='robin', resolution='l', area_thresh=1000.0, lat_0=0, lon_0=0) m.drawcoastlines() m.drawcountries() m.fillcontinents(color='green', lake_color='aqua') m.drawmapboundary(fill_color='aqua') # Define city coordinates cities = { 'New York': (-74.0060, 40.7128), 'London': (-0.1276, 51.5074), 'Tokyo': (139.6503, 35.6762), 'Sydney': (151.2093, -33.8688) } # Plot cities for city, coords in cities.items(): x, y = m(coords[0], coords[1]) m.plot(x, y, 'ro', markersize=10) plt.text(x, y, city, fontsize=12, fontweight='bold', ha='right', va='bottom') plt.title("World Map with Major Cities") plt.show()

This script adds red dots for each city and labels them on the map.

Creating Customized Maps

Basemap allows for extensive customization. Let's create a map focused on a specific region with more detailed features:

from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt plt.figure(figsize=(12, 8)) # Focus on Europe m = Basemap(projection='lcc', resolution='h', lat_0=50, lon_0=10, width=3000000, height=3000000) m.drawcoastlines() m.drawcountries() m.fillcontinents(color='tan', lake_color='lightblue') m.drawmapboundary(fill_color='lightblue') # Add more details m.drawrivers(color='blue', linewidth=0.5) m.shadedrelief() plt.title("Detailed Map of Europe") plt.show()

This example creates a detailed map of Europe, including rivers and shaded relief for terrain visualization.

Conclusion

Basemap is a powerful tool for creating geographic visualizations in Python. With its wide range of projections and customization options, you can create informative and visually appealing maps for various purposes. As you continue to explore Basemap, you'll discover even more advanced features to enhance your geographic plotting skills.

Popular Tags

pythonmatplotlibbasemap

Share now!

Like & Bookmark!

Related Collections

  • Python Basics: Comprehensive Guide

    21/09/2024 | Python

  • Seaborn: Data Visualization from Basics to Advanced

    06/10/2024 | Python

  • LlamaIndex: Data Framework for LLM Apps

    05/11/2024 | Python

  • Mastering NLTK for Natural Language Processing

    22/11/2024 | Python

  • Mastering Scikit-learn from Basics to Advanced

    15/11/2024 | Python

Related Articles

  • Mastering Line Plots and Time Series Visualization with Seaborn

    06/10/2024 | Python

  • Mastering Pandas

    25/09/2024 | Python

  • Mastering Context Window Management in Python with LlamaIndex

    05/11/2024 | Python

  • Mastering Data Validation with Pydantic Models in FastAPI

    15/10/2024 | Python

  • Mastering Pandas MultiIndex and Advanced Indexing

    25/09/2024 | Python

  • Exploring Geographic Plotting with Basemap in Matplotlib

    05/10/2024 | Python

  • Streamlining Data Ingestion

    05/11/2024 | Python

Popular Category

  • Python
  • Generative AI
  • Machine Learning
  • ReactJS
  • System Design