LlamaIndex is a powerful framework for building LLM-powered applications, and one of its key features is the ability to create custom node types. These custom nodes allow developers to extend the functionality of LlamaIndex and tailor it to specific use cases. In this blog post, we'll explore how to implement custom node types in Python using LlamaIndex.
Before we dive into the implementation, let's understand why custom node types are valuable:
To create a custom node type, we need to subclass the IndexNode
or TextNode
class from LlamaIndex. Here's a basic example:
from llama_index.data_structs.node import Node class CustomNode(Node): def __init__(self, text, extra_info=None, **kwargs): super().__init__(text, **kwargs) self.extra_info = extra_info def get_extra_info(self): return self.extra_info
In this example, we've created a CustomNode
that includes an extra_info
attribute. This allows us to store additional information alongside the node's text content.
One of the advantages of custom nodes is the ability to add specific methods. Let's enhance our CustomNode
with a method to process its content:
import nltk from llama_index.data_structs.node import Node class CustomNode(Node): def __init__(self, text, extra_info=None, **kwargs): super().__init__(text, **kwargs) self.extra_info = extra_info def get_extra_info(self): return self.extra_info def get_key_phrases(self, num_phrases=3): sentences = nltk.sent_tokenize(self.text) words = nltk.word_tokenize(self.text) tagged = nltk.pos_tag(words) noun_phrases = [] for word, pos in tagged: if pos.startswith('NN'): noun_phrases.append(word) return noun_phrases[:num_phrases]
This get_key_phrases
method uses NLTK to extract key noun phrases from the node's text content, which can be useful for summarization or topic extraction tasks.
Now that we have our custom node type, let's see how to use it within LlamaIndex:
from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader from llama_index.node_parser import SimpleNodeParser # Create a custom node parser class CustomNodeParser(SimpleNodeParser): def get_nodes_from_documents(self, documents): nodes = super().get_nodes_from_documents(documents) return [CustomNode(node.text, extra_info="Custom data") for node in nodes] # Load documents documents = SimpleDirectoryReader('data').load_data() # Parse documents into custom nodes parser = CustomNodeParser() nodes = parser.get_nodes_from_documents(documents) # Create index with custom nodes index = GPTSimpleVectorIndex(nodes) # Query the index response = index.query("What are the main topics?") print(response) # Use custom node method for node in nodes: print(f"Key phrases: {node.get_key_phrases()}") print(f"Extra info: {node.get_extra_info()}")
In this example, we've created a custom node parser that converts standard nodes into our CustomNode
type. We then use these custom nodes to create an index and perform queries.
As you become more comfortable with custom nodes, you can create more complex types to handle specific data structures or processing requirements. For instance, you might create a TimeseriesNode
for time-series data or an ImageNode
for image-based information.
Here's a quick example of a TimeseriesNode
:
import pandas as pd from llama_index.data_structs.node import Node class TimeseriesNode(Node): def __init__(self, text, timestamp, value, **kwargs): super().__init__(text, **kwargs) self.timestamp = pd.to_datetime(timestamp) self.value = value def to_series(self): return pd.Series({ 'timestamp': self.timestamp, 'value': self.value, 'text': self.text }) def resample(self, rule='D'): series = self.to_series() return series.resample(rule).mean()
This TimeseriesNode
allows you to work with time-based data more effectively within LlamaIndex, including resampling and conversion to pandas Series.
Custom node types in LlamaIndex offer a powerful way to extend the framework's capabilities and tailor it to your specific needs. By implementing custom nodes, you can enhance data processing, improve organization, and create more sophisticated LLM applications. As you continue to work with LlamaIndex, experiment with different custom node types to unlock the full potential of your data and LLM models.
14/11/2024 | Python
15/10/2024 | Python
06/12/2024 | Python
15/11/2024 | Python
17/11/2024 | Python
08/11/2024 | Python
06/12/2024 | Python
08/11/2024 | Python
22/11/2024 | Python
08/12/2024 | Python
21/09/2024 | Python
08/11/2024 | Python