logologo
  • AI Tools

    DB Query GeneratorMock InterviewResume BuilderLearning Path GeneratorCheatsheet GeneratorAgentic Prompt GeneratorCompany ResearchCover Letter Generator
  • XpertoAI
  • AI Interviewer
  • MVP Ready
  • Resources

    CertificationsTopicsExpertsCollectionsArticlesQuestionsVideosJobs
logologo

Elevate Your Coding with our comprehensive articles and niche collections.

Useful Links

  • Contact Us
  • Privacy Policy
  • Terms & Conditions
  • Refund & Cancellation
  • About Us

Resources

  • Xperto-AI
  • Certifications
  • Python
  • GenAI
  • Machine Learning

Interviews

  • DSA
  • System Design
  • Design Patterns
  • Frontend System Design
  • ReactJS

Procodebase © 2024. All rights reserved.

Level Up Your Skills with Xperto-AI

A multi-AI agent platform that helps you level up your development skills and ace your interview preparation to secure your dream job.

Launch Xperto-AI

Building RESTful APIs with FastAPI

author
Generated by
ProCodebase AI

15/01/2025

python

Sign in to read full article

Introduction to FastAPI

FastAPI is a modern, fast (high-performance) Python web framework for building APIs. It's designed to be easy to use, fast to code, and ready for production. FastAPI is based on Starlette for the web parts and Pydantic for the data parts, making it a powerful tool for building RESTful APIs.

Let's dive into the key features and concepts of FastAPI:

Setting Up FastAPI

First, install FastAPI and its dependencies:

pip install fastapi[all]

Now, let's create a simple "Hello, World!" API:

from fastapi import FastAPI app = FastAPI() @app.get("/") async def root(): return {"message": "Hello, World!"}

To run the server:

uvicorn main:app --reload

Visit http://localhost:8000 in your browser, and you'll see the JSON response.

Request Handling and Path Parameters

FastAPI makes it easy to handle different HTTP methods and path parameters:

from fastapi import FastAPI app = FastAPI() @app.get("/items/{item_id}") async def read_item(item_id: int): return {"item_id": item_id}

In this example, item_id is a path parameter that FastAPI will automatically convert to an integer.

Query Parameters

You can easily define query parameters:

from fastapi import FastAPI app = FastAPI() @app.get("/items/") async def read_items(skip: int = 0, limit: int = 10): return {"skip": skip, "limit": limit}

Now, you can call /items/?skip=20&limit=30 to customize the query.

Request Body

FastAPI uses Pydantic models to define request bodies:

from fastapi import FastAPI from pydantic import BaseModel class Item(BaseModel): name: str description: str = None price: float tax: float = None app = FastAPI() @app.post("/items/") async def create_item(item: Item): return item

This setup automatically validates the incoming JSON data against the Item model.

Response Models

You can use Pydantic models to define your API's response structure:

from fastapi import FastAPI from pydantic import BaseModel class Item(BaseModel): name: str price: float app = FastAPI() @app.get("/items/{item_id}", response_model=Item) async def read_item(item_id: int): return {"name": "Foo", "price": 42.0}

This ensures that your API always returns the expected data structure.

Dependency Injection

FastAPI's dependency injection system is powerful and flexible:

from fastapi import FastAPI, Depends, HTTPException app = FastAPI() async def verify_token(token: str): if token != "secret-token": raise HTTPException(status_code=400, detail="Invalid token") return token @app.get("/items/") async def read_items(token: str = Depends(verify_token)): return {"token": token}

This example demonstrates how to use dependency injection for authentication.

Async Support

FastAPI is built on top of Starlette, which means it has excellent support for asynchronous programming:

import asyncio from fastapi import FastAPI app = FastAPI() @app.get("/") async def root(): await asyncio.sleep(1) # Simulate an I/O-bound operation return {"message": "Hello, World!"}

This allows your API to handle many concurrent requests efficiently.

OpenAPI (Swagger) Documentation

FastAPI automatically generates OpenAPI (formerly Swagger) documentation for your API. Visit /docs to see the interactive API documentation and /redoc for an alternative view.

Error Handling

FastAPI provides a clean way to handle errors:

from fastapi import FastAPI, HTTPException app = FastAPI() @app.get("/items/{item_id}") async def read_item(item_id: int): if item_id == 42: raise HTTPException(status_code=404, detail="Item not found") return {"item_id": item_id}

This example shows how to raise an HTTP exception with a custom status code and message.

Advanced Features

FastAPI offers many advanced features, including:

  1. Background tasks
  2. WebSockets
  3. CORS (Cross-Origin Resource Sharing)
  4. Middleware support
  5. File uploads
  6. Security and authentication utilities

Here's a quick example of setting up CORS:

from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], )

This setup allows all origins, which is suitable for development but should be restricted in production.

Popular Tags

pythonfastapirestful-api

Share now!

Like & Bookmark!

Related Collections

  • Mastering Pandas: From Foundations to Advanced Data Engineering

    25/09/2024 | Python

  • Seaborn: Data Visualization from Basics to Advanced

    06/10/2024 | Python

  • Mastering Computer Vision with OpenCV

    06/12/2024 | Python

  • Mastering Hugging Face Transformers

    14/11/2024 | Python

  • PyTorch Mastery: From Basics to Advanced

    14/11/2024 | Python

Related Articles

  • Setting Up Your Seaborn Environment

    06/10/2024 | Python

  • Seaborn and Pandas

    06/10/2024 | Python

  • Mastering Time Series Analysis with Scikit-learn in Python

    15/11/2024 | Python

  • Unveiling the Power of Unsupervised Learning in Python with Scikit-learn

    15/11/2024 | Python

  • Working with Model Persistence in Scikit-learn

    15/11/2024 | Python

  • Mastering Clustering Algorithms in Scikit-learn

    15/11/2024 | Python

  • Building Python Extensions with Cython

    15/01/2025 | Python

Popular Category

  • Python
  • Generative AI
  • Machine Learning
  • ReactJS
  • System Design