logologo
  • AI Tools

    DB Query GeneratorMock InterviewResume BuilderLearning Path GeneratorCheatsheet GeneratorAgentic Prompt GeneratorCompany ResearchCover Letter Generator
  • XpertoAI
  • MVP Ready
  • Resources

    CertificationsTopicsExpertsCollectionsArticlesQuestionsVideosJobs
logologo

Elevate Your Coding with our comprehensive articles and niche collections.

Useful Links

  • Contact Us
  • Privacy Policy
  • Terms & Conditions
  • Refund & Cancellation
  • About Us

Resources

  • Xperto-AI
  • Certifications
  • Python
  • GenAI
  • Machine Learning

Interviews

  • DSA
  • System Design
  • Design Patterns
  • Frontend System Design
  • ReactJS

Procodebase © 2024. All rights reserved.

Level Up Your Skills with Xperto-AI

A multi-AI agent platform that helps you level up your development skills and ace your interview preparation to secure your dream job.

Launch Xperto-AI

Building a Sudoku Solver Using Advanced Recursion and Backtracking in Java

author
Generated by
Anushka Agrawal

13/10/2024

Sudoku

Sign in to read full article

Sudoku is a game that challenges both the mind and the spirit of logic. It consists of a 9x9 grid that is partially filled with digits from 1 to 9. The objective is to fill the grid such that every row, every column, and each of the nine 3x3 subgrids contains all of the digits from 1 to 9 without repetitions. When it comes to solving these puzzles programmatically, recursion and backtracking are two powerful techniques that come into play. In this blog, we are going to explore how to build a Sudoku solver in Java using these concepts.

Understanding Backtracking

Backtracking is a technique for finding solutions to problems incrementally, by trying partial solutions and then removing those that fail to satisfy the conditions of the problem. In the context of Sudoku:

  1. Choose: Select an empty cell in the Sudoku grid.
  2. Try: Try placing a valid number (1-9) in that cell.
  3. Check: Verify if placing that number violates any Sudoku rules (row, column, or subgrid).
  4. Recursion: If valid, move on to the next empty cell recursively.
  5. Backtrack: If an invalid state is reached, reset the cell and retry a different number.

A Simple Example

Consider a partially filled Sudoku grid:

5 3 . | . 7 . | . . .
6 . . | 1 9 5 | . . .
. 9 8 | . . . | . 6 .
------+-------+------
8 . . | . 6 . | . . 3
4 . . | 8 . 3 | . . 1
7 . . | . 2 . | . . 6
------+-------+------
. 6 . | . . . | 2 8 .
. . . | 4 1 9 | . . 5
. . . | . 8 . | . 7 9

Here, . represents an empty cell. Our task is to fill it completely while adhering to the Sudoku rules.

The Algorithm Implementation in Java

Let's jump straight into the implementation. Below is the Java code for a Sudoku solver using backtracking:

public class SudokuSolver { private static final int SIZE = 9; public void solveSudoku(char[][] board) { backtrack(board); } private boolean backtrack(char[][] board) { for (int row = 0; row < SIZE; row++) { for (int col = 0; col < SIZE; col++) { if (board[row][col] == '.') { // Find an empty cell for (char num = '1'; num <= '9'; num++) { if (isValid(board, row, col, num)) { board[row][col] = num; // Place number if (backtrack(board)) { // Recur return true; // Sudoku solved } board[row][col] = '.'; // Backtrack } } return false; // If no number can be placed return false } } } return true; // All cells filled correctly } private boolean isValid(char[][] board, int row, int col, char num) { for (int i = 0; i < SIZE; i++) { if (board[row][i] == num || board[i][col] == num || board[row / 3 * 3 + i / 3][col / 3 * 3 + i % 3] == num) { return false; // Check row, column, and subgrid } } return true; // If valid } }

Code Breakdown

  1. Data Structure: We are using a 2D char array to represent the Sudoku board.

  2. Main Method: The solveSudoku method kicks off the solving process.

  3. Backtracking Function: The core of our logic is in the backtrack method. It scans the board for empty cells and tries each number from 1 to 9.

  4. Valid Placement Check: In the isValid method, we ensure that a number doesn’t already exist in the current row, column, or the respective 3x3 subgrid.

This simple yet effective implementation allows us to solve Sudoku puzzles of varying difficulty by leveraging the elegance of recursion and the systematic approach of backtracking.

Testing the Solver

To test our solver, create a main method as follows:

public static void main(String[] args) { char[][] board = { {'5', '3', '.', '.', '7', '.', '.', '.', '.'}, {'6', '.', '.', '1', '9', '5', '.', '.', '.'}, {'.', '9', '8', '.', '.', '.', '.', '6', '.'}, {'8', '.', '.', '.', '6', '.', '.', '.', '3'}, {'4', '.', '.', '8', '.', '3', '.', '.', '1'}, {'7', '.', '.', '.', '2', '.', '.', '.', '6'}, {'.', '6', '.', '.', '.', '.', '2', '8', '.'}, {'.', '.', '.', '4', '1', '9', '.', '.', '5'}, {'.', '.', '.', '.', '8', '.', '.', '7', '9'} }; SudokuSolver solver = new SudokuSolver(); solver.solveSudoku(board); for (int i = 0; i < board.length; i++) { for (int j = 0; j < board[i].length; j++) { System.out.print(board[i][j] + " "); } System.out.println(); } }

When you run this code, it should fill the empty cells of the Sudoku puzzle, showcasing the power of recursion and backtracking.

Solving Sudoku puzzles using the principles of advanced recursion and backtracking in Java is not only fun but also a great way to polish your problem-solving abilities. By understanding and implementing these concepts, you can tackle complex algorithmic challenges head-on!

Popular Tags

SudokuJavaRecursion

Share now!

Like & Bookmark!

Related Collections

  • DSA Mastery for Interviews

    23/09/2024 | DSA

  • Advanced String-based Interview Techniques

    15/11/2024 | DSA

  • Advanced Graph Interview Questions in Java

    16/11/2024 | DSA

  • Advanced Dynamic Programming Interview Questions

    15/11/2024 | DSA

  • Mastering Bit Manipulation: Unlocking Binary Power

    08/12/2024 | DSA

Related Articles

  • Understanding Priority Queue Implementation with Java Collections Framework

    16/11/2024 | DSA

  • The Traveling Salesman Problem

    16/11/2024 | DSA

  • Dynamic Arrays and Array Resize

    06/12/2024 | DSA

  • Sorting Arrays

    06/12/2024 | DSA

  • Introduction to Priority Queue and Heaps in Java

    16/11/2024 | DSA

  • Understanding the Subset Sum Problem in Advanced Dynamic Programming

    15/11/2024 | DSA

  • Anagram Grouping

    15/11/2024 | DSA

Popular Category

  • Python
  • Generative AI
  • Machine Learning
  • ReactJS
  • System Design